20

Introducing
Web Parts Controls

if you need informa
The WebPartManager Control 750

R

non

The ImportCatalogPart Controf 776

The ConnectionsZone Controf 791

Chapter 20

Web Parts controls enable you to build flexible websites that can be customized dynamically at run time. Web
Parts are objects of a Web form on which users can perform multiple functions, such as open, close, minimize, or
modify the content, behavior, or appearance of a Web Parts control, according to the requirements. The Portal
framework is used to create Web pages with multiple Web Parts controls.

In this chapter, we focus on Web Parts controls and their classes that form an integral part of the Portal
framework. This chapter also describes how to use Web Parts controls in Visual Studio 2008 to create
customizable websites. In addition, you learn how to declare controls in Visual Basic. This chapter also covers
the members (properties, methods, and events) of various Web Parts control classes, These members are essential
to develop a customizable website.

This chapter mainly deals with the following Web Parts controls:
WebPartManager
ProxyWebPartManager
WebPartZone
CatalogZone
DeclarativeCatalogPart
PageCatalogPart
ImportCatalogPart
EditorZone
LayoutEditorPart
AppearanceEditorPart
PropertyGridEditorPart
BehaviorEditorPart
ConnectionsZone

L0000 0D0O0COoUo0oDDODOO

Now, let’s discuss these controls one by one.

The WebPartManager Control

The WebPartManager control acts like a centralized hub that manages all the other Web Parts controls on a
Web page. This control coordinates the interaction between Web Parts and Web Parts zones. The
WebPartManager control manages the personalization states of Web Parts controls on a Web page.
Personalization allows storing of user information and all the runtime customizations {defined by the user) in a
persistent storage (typically SQL Server database). These customizations are loaded when the user visits the
website the next time. If you create a Web page that uses Web Parts controls, ensure that the page contains a
WebPartManager control. There must be only one.instance of the WebPartManager control on each Web
page that uses the control, and it must be placed before other Web Parts Zone controls are placed on the Web
page. The WebPartManager control is an object of the WebPartManager class.

The WebPartManager control performs the following tasks to control the functionality of a Web page:

O Keeping track of different controls on a Web page.

O Inserting and removing controls on a Web page.

Q Establishing, monitoring, and managing connections between various Web Parts controls.

O Enabling you to customize the appearance of a Web page by dragging various controls to different locations

on the page.

Providing various views, which you can use to change and personalize the properties and behavior of

controls.

8 Enabling you to toggle between different views of a Web page, thereby simplifying certain tasks, such as
modifying page layout and editing controls.

]

750

introducing Web Parts Controls

O Enabling you to define and raise the lifecycle evenis associated with a Web Parts control. Lifecycle events
keep track of the Web Parts control to determine when the control is inserted, moved, connected, or
removed.

You can insert a WebPartManager control by dragging it from the Toolbox and drepping it on the Design view
of an .aspx page. Figure 20.1 shows the WebPartManager control in the Design view:

Figure 20.1: The WebPartManager Controi

You can also add the WebPartManager control to an application by using the following code in the <form>
element of the .aspx page

To use Web Parts controls on each page of a website, a separate WebPartManager control has to be used.

If. however, you want to use a single WebPartManager controf on a multi-paged website containing Web Parts controls,
place the WebPartManager control on the master page of the website.

The WebPartManager control is created by using the WebPartManager class of the NET Framework class
library. This class is available in the System.Web.UI.WebControls.WebParts namespace, which resides in
the System Web assembly The mhentance hlerarchy of the WebPartManager class is:

To use the WebPa rtManager control you need to declare 1t in the source code of the Web page as:
" pim <object:namer As WebRArTRARAGEr: SRS -
The WebPartManager class is declared as:

Noteworthy methods of the WebPartManager class are listed in Table 20.1:

Table 20.1: Noteworthy Methods of the WebPartManager Class

ActivateConnections Activates all currently inactive connections on a Web page

AddWebPart Adds a WebPart control to a Web page

BeginWebPartConnecting Begins the process of connecting two Web Parts controls

BeginWebPartEditing Begins the process of modifying a Web Parts control

BuildProfileTree Collects data about a server control and sends it to the Trace property, which is
displayed on a Web page when tracing is enabled for the page

CanConnectWebParts Checks Web Parts controls involved in a connection to determine if the controls are
capable of being connected

751

Chapter 20

CheckRenderClientScript

Table 20.1: Noteworthy Methods of the WebPartManager Class

Checks the ability of the browser to request for a Web page. This method also checks

the value of the EnableClientScript property, which specifies whether to render
the client script of the Web page or not

ClearChildControlState

Removes control-state information about the child controls of a server control. This
method is inherited from the Control class

ClearChildState Removes both view-state and control-state information about the child controls of a
server control. This method is inherited from the Contro1 class

ClearChildViewState Removes view-state information about the child controls of a server control. This
method is inherited from the Cont rol class

CloseWebPart Closes a Web Parts control so that it is not rendersd on a Web page, but can be
reopened on the Web page

ConnectWebParts Connects two Web Parts controls that exist in a WebPartZoneBase zone

CopyWebPart Creates a copy of a Web Parts or a server control and inserts the control in a Web

page. This method is used by a Web Parts control set. A Web Parts control set is a
group of components, which enables users to modify the appearance and behavior of
Web pages directly from the browser

CreateAvailapbleTransform

Creates a group of transformers specified in a configuration file of a website. These

ers transformers are then added to a collection of transformers, which is referenced by
the AvailableTransformers property. Transformers are used to create
connections between Web Parts controls

CreateChildControls Determines the server control using composition-based implementation to create

child controls for posting back or rendering

CreateControlCollection

Gets a collection of all the controls placed on a Web page that are managed by using
the WebPartManager control

CreateDisplayModes

Groups the display modes related to a website that has Web Parts controls

D

CreateDynamicConnectionl

Returns a unique identification number for a dynamic connection

CreateDynamicWebPartID

Creates a unique ID value for a dynamic Web Parts control

CreateErrorWebPart

Creates and inserts a special control into a Web page. This control is displayed only
when an error occurs while loading or creating a dynamic Web Parts control

CreatePersonalization

Creates a personalization object that stores the personalization data of the user of a
particular Web page

DisceonnectWebPart

CreateWebPart Provides Web Parts control functionality to a server control that is not a Web Parts
control

DeleteWebPart Deletes a dynamic instance of a WebPart control
Deletes a Web Parts or a server control, which has been closed or removed from the

connections in which it is participating

DisconnectWebParts

Starts the process of disconnecting two WebPart or server controls on a Web page

Dispose

Disposes off a server control completely before releasing it from memory

EndWebPartConnecting

Completes the process of connecting two or more Web Parts controls

EndWebPartEditing

Completes the editing process of a Web Parts control

752

intreducing Web Parts Controls

Table 20.1: Noteworthy Methods of the WebPartManager Class

EnsureChildControls

Identifies whether or not a server control contains child controls. This method aiso

creates child controls for the server control if there are no child controls

EnsurelD Creates an identifier for a Web Parts or server control if the control does not have an
identifier assigned to it

Equals Determines whether a specified object is equal to the current object or not

ExportWebPart Creates the XML file containing state and property information about the server
control

Finalize Enables an object to free resources and perforin cleanup operations before the object is
retrieved for garbage collection

Focus Sets and removes the focus to or from a WebPartManger control

GetConsumerConnectionPoi
nts

Get a collection of ConsumerConnectionPoint objects, which act as connection
points from a server control

GetCurrentWebPartManager

Obtains the current instance of a WebPartManager control on a Web page

GetDesignModeState Retrieves design-time data related to a WebPartManager control

GetDisplayTitle Retrieves the string that contains the value for the DisplayTitle property of a Web
Parts control

GetExportUrl Retrieves the relative virtual path and the query string when a user tries to export a
Web Parts control

GetGenericWebPart Obtains a reference to the instance of the GenericWebPart control, which contains a
server control

GetHashCode Acts as a hash function for the object of the WebPartManager class. A hash function

is used to encrypt and decrypt data to make it secure while transferring it over the
Internet

GetProviderConnectionPoi
nts

Obtains a collection of ProviderConnectionPoint objects that serve as connection
points from a server control that is acting as a provider within a Web Parts connection

GetType Returns a Type value for the current object

HasControls Verifies whether a server control contains child controls or not

HasEvents Obtains a value to specify whether events are registered for a Web Parts control or
child controls

ImportWebPart Imports an XML description file containing the state and property data for a Web
Parts control

IsAuthorized Determines if a Web Parts or server control can be added to a Web page

IsLiterailontent Decides whether a server control stores only literal content. (Literal content is content
that is in plain text only, and not in the form of images, controls, and so on

LoadControlState Stores state data of a server control saved from a previous page request and return the

data on a successive request

LoadCustomPerscnalizatio
nState

Stores custom personalization data, which is passed by personalization objects to a
WebPartManager control. Personalization data is used at the time of the
initialization process. Personalization objects are used to personalize Web Parts
controls

LoadViewState

Returns view-state information requested by a previous page. The request is saved by
the SaveViewState method

753

Chapter 20

Table 20.1: Noteworthy Methods of the WebPartManager Class

Returns the physical path of a control, which is mapped by a virtual path. The virtual

MapPathSecure
path can be either absolute or relative

MemberwiseClone Constructs a copy of the current object

MoveWebPart Changes the location of a server contrel from one WebPartZoneBase zone to
another zone or to a new location within the same zone

OnAuthorizeWebPart Invokes the AuthorizeWebPart event and its handler

OnBubbleEvent Determines whether the event far a server control is passed up the UI server control

hierarchy of a Web page

OnConnectionsdctivated

Invokes the ConnectionActivated event to specify whether a Web page and its
controls are loaded in the browser. It also indicates whether the connections on the
Web page are activated to share data

OnConnectionsBActivating

Invokes the ConnectionActivating event to indicate that a Web page and its
controls are loaded in the browser and the process of activating connections on the
Web page can begin

OnDataBinding

Invokes the DataBinding event

OnDisplayModeChanged

Invokes the TisplayModeChanged event to specify that the process of changing the
display mode on a Web page has been finished by the WebPartManager control

OnDisplayModeChanging

[nvokes the DisplayModeChanging event to specify that the WebPartManager
control is in the process of changing the display mode on a Web page

Cnlnit Invokes the Init event This is the first event in the lifecycle of the
WebPartManager control

OnLoad Invokes the Load event

OnPreRender Generates the PreRender event before a WebPartManager control is rendered on a

Web page. This method notifies the WebPartManager control to perform any
necessary pre-rendering steps prior to saving view-state and rendering content

OnSelectedWebPartChanged

Generates the SelectedWebPartChanged event after a Web Parts control is
selected or its selection cleared

OnSelectedwWebPartChangin
E)

Generates the SelectedWebPartChanging event while changing a selected
WebPart control

OnUnload Generates the base Unload event to remove a WebPartManager instance from a
Web page .

OnWebPartAdded Generates the WebPartAdded event after a Web Parts control is added to a Web page

OnWebPartAdding Generates the WebPartAdding event when a Web Parts control is added to a
WebPartZoneBase zone

OnWebPartClosed Generates the WebPartClosed event to indicate the removal of a Web Parts control
from a Web page

OnWebPartClosing Generates the WebPartClosing event when a Web Parts or server control is
removed from a Web page

OnWebPartDeleted Generates the WebPartDeleted event after a Web Parts control is permanently
deleted from a Web page

OnWebPartDeleting Indicates that a dynamic Web Parts control is being deleted

754

introducing Web Parts Controls

Table 20.1: Noteworthy Methods of the WebPartManager Class

OnWebPartMoved Generates the WebPartMoved event after a Web Parts control is moved to another
location on a Web page

OnWebPartMoving Generates the WebPartMoving event to indicate that a Web Parts control in a
WebPartZoneBase zone is in the process of being moved

OnWebPartsConnected Generates the WebPartsConnected event after a connection is established between

Web Parts controls

OnWepPartsConnecting

Generates the WebPartsConnecting event while establishing a connection between
two Web Parts controls

OnWebPartsDisconnected

Generates the WebPartsDisconnected event after a connection between Web Parts
controls terminates

OnWebPartsDisconnecting

Generates the WebPartsDisconnecting event, which indicates that two Web Parts
controls in a WebPartZoneBase zone are going to terminate a connection

OpenfFile

Retrieves a stream to read a file. The file path is specified as a parameter

RaziseBubbleEvent

Provides the sources as well as information of the event of a child control to its parent
control

RegisterClientScript

Allows a WebPartManager control to provide client-side script used for
personalization features, such as dragging Web Parts controls in a Web page

RemovedControl Called when a server control is removed from the Controls collection of a Control
object

Render Overrides the Control.Render (HtmlTextWriter) method so that the
WebPartManager control is prevented from rendering any content

RenderChildren Provides the content of the child control of a server control to the HtmlTextWriter
object, which writes the content to be rendered on the client

RenderContrel Displays the content of a server controt and stores information related to tracing, if
tracing is enabled

ResolveAdapter Retrieves the control adapter that renders a specified control

ResolveClientUrl Obtains a URL used by the browser in which you want to run your website

ResolveUrl Converts a URL so that it is usable on the requesting client

SaveControlState Stores state-related data for a WebPartManager control. You can restore the data by

requesting the Web page containing the WebPartManager control
eq) page g

SaveCustomPerscnalizatio
nState

Stores custom personalization state data maintained by a WebPartManager control
for a Web page, so that this data is reloaded whenever the Web page is reloaded

SaveViewState Stores the changes in a server control view-state. This method saves only those
changes that occur when a Web page is posted back to the server
SetDesignModeState Sets design-time data for a control

SetPersconalizationDirty

Sets a flag, which specifies whether the custom personalization data for a
WebPartManager contrel has changed or not

SetRenderMethodDelegate

Allocates an event handler delegate to provide the content of a server control to the
parent control

SetSelectedWebPart

Sets the values for the SelectedWebPart property so that it is equal to the value of
the currently selected Web Part control

755

Chapter 20

ToString

Returns a 5t.ring value, which represents the current object

Table 20.1: Noteworthy Methods of the WebPartManager Class

To

TrackViewState Enables tracking of the changes in the view-state data of a WebPartManager control.
enable tracking, the method «calls the base method, that is,
Control.TrackViewState ()

Noteworthy properties of the WebPartManager class are listed in Table 20.2:

Table 20.2: Noteworthy Properties of the WebPartManager Class

Adapter

Retrieves the browser-specific adapter for a WebPartManager control

AppRelativeTemplateScurceDirec
tory

Retrieves or specifies the application-relative virtual directory of a Web page
or object that contains a WebPartManager contral

AvailableTransformers

Retrieves a collection of WebPart Transformer objects available for creating
Web Parts connections between server controls

BindingContainer Retrieves a server control containing a WebPartManager control’s data-
binding properties
ChildControlsCreated Retrieves a value that indicates whether or not the child controls of a server
: control are created)
ClientID Enables you to use a server control identifier generated by ASP.NET
- ClientIDSeparator Retrieves a character value that represents the separator character used in the

ClientID property

CloseProviderWarning

Retrieves and specifies a warning message displayed if a user closes a server
control acting as a provider to the other server controls in a connection

Connections Retrieves a reference to a set of current connections on a Web phge

Context Retrieves the HttpContext object for the current Web request. The
HttpContext object encapsulates request information, such as the user and
machine accessing the website

Controls Retrieves a collection of all WebPart, server, or user controls contained in the
WebPartZoneBase zones on a Web page

DeleteWarning. Retrieves and specifies a custom warning message, displayed when a server
control is deleted

DesignMode Retrieves a value that indicates if a server control is lised on a design surface

DisplayMcde Retrieves or specifies the display mode for a Web page containing Web Parts
controls] .

. DisplayModes Retrieves a set of display modes in the read-only mode associated with a

WebPartManager control

DynamicConnections

Retrieves a collection of dynamic connections that exist on a Web page

EnableClientScript Retrieves or sets a value that specifies whether or not client-side scripting is
enabled on a Web page containing WebPartManager control

EnableTheming Retrieves a value that determines whether or not a theme is enabled on a Web
page . e .

EnableViewState Retrieves or specifies a value to indicate whether a server control persists its

756

.

Introducing Web Parts Controls

i"“

Table 20.2: Noteworthy Properties of the WebPartManager Class

view-state, and the view-state of any child controls it contains, to the
requesting client

Events

Retrieves a list of event handlers for a WebPartManager control

ExportSensitiveDataWarning

Retrieves or sets the text for a warning message, which is displayed when a
user exports sensitive data from a WebPart control

HasChildViewState Retrieves a value that indicates whether or not the child controls of the current
server control have saved view-state settings

ip Retrieves or sets the identifier of a Web server control

IdSeparator Retrieves the character used for separating control identifiers for the child
controls of the WebPartManager control

Internals Retrieves a reference to the WebPartManagerInternals class, which is

used to combine and separate a set of methods implemented in the
WebPartManager class

IsChildControlStateCleared

Retrieves a value indicating whether the child controls of the
WebPartManager control possess control-state. Control-state holds
information specific to a control, which is essential to send to the server at the
time of postback. Control-state cannot be disabled as in the case of view-state

IsCustomPersonalizatienStateDi
rty

Retrieves a value that indicates whether any personalization changes have
been made that affect page-level personalization details of a
WebPartManager control

IsTrackingViewState

Retrieves a value indicating that a server control is saving the changes to its
view-state

IsViewStateEnabled Retrieves a value that indicates whether the view-state is enabled for a
WebPartManager control '

LoadViewStateByID Retrieves a value that indicates whether the view-state of a WebPartManager
control can be loaded by ID instead of index

NamingContainer Retrieves the reference to the naming container of the Web server control to
create a unique namespace for every Web server control

Page Retrieves a reference to the Web page instance that contains a
WebPartManager control

Parent Retrieves a reference to the parent control of a server control in the control
hierarchy of a Web page

Personalization Retrieves a reference to the object containing the data needed to personalize a
Web page

SelectedWebPart Returns a reference to the currently selected Web Parts or server control

Site Returns information about the container control, which stores the current
control when it is modified in the Design view

SkinID Gets or sets an empty string to ensure that a user cannot apply any skin to a
WebPartManager control

StaticConnections Returns a reference to the collection of all WebPartConnection objects that

are defined as static connections on a Web page

SupportedDisplayModes

Retrieves a set of all display modes available on a particular Web page. This is
a read-only property

757

Chapter 20

TemplateControl

Table 20.2: Noteworthy Propoerties of the WebPartManager Class

Gets or sets the reference to the template containing the current contral

TemplateScurceDirectory

Returns the virtual directory of the Web page containing the
WebPartManager control. This property is inherited from the Control class

UniqueID Returns a unique identifier for a server control. This property is inherited
from the Control class
ViewState Retrieves a dictionary of state information that allows users to save and

restore the view-state of a server control across multiple requests for the same
Web page

ViewStateIgnoresCase

Gets a value that indicates whether the StateBag object is case-sensitive

Visible Retrieves a value to make the child controls of a WebPartManager control
visible

WebParts Returns a reference to all WebPart controls on a Web page that are monitored
by a WebPartManager control

Zones Returns a reference to a collection of all WebPart ZoneBase zones included

on a Web page

Noteworthy events of the WebPartManager class are listed in Table 20.3:

AuthorizeWebPart

Table 20.3: Noteworthy Events of the WebPartManager Class

Initiated when the IsAuthorized method is invoked. This event determines whether
a WebPart or server control can be added to a Web page.

ConnectionsActivated

Initiated after all Web Parts connections specified on a Web page connect and start
sharing data between consumer and provider controls. Consumer controls are those
controls that receive data while provider controls are those that send data.

ConnectionsActivating

Initiated during the process of activating all established Web Parts connections on a
Web page.

DataBinding Initiated after a server control binds to a data source. This event is inhetited from the
Control class.

DisplayModeChanged Initiated when the display mode of a Web page is changed.

DisplayModeChanging Initiated after a user clicks a verb (a menu item displayed by a Web Part) on a Web
page that begins the process of changing the display mode of Web page.

Disposed Initiated when a server control of a Web page is released from memory, which is the
last stage of the server control lifecycle when an ASP.NET page is requested.

Init Initiated when a server control is initialized.

Load Initiated when a setver control is loaded into the Web Page.

PreRender Initiated when a server control is loaded but not yet rendered.

SelectedWebPartChanged

Initiated after moving or changing a selected WebPart or server control to another
control.

SelectedWebPartChanging

Initiated during the process of changing the selected Web Parts or a server control.

Unload

Initiated when a server control is unloaded from memory,

WebPartaAdded

Initiated when a dynamic WeE Parts or server control is added to a

758

introducing Web Parts Controls

Table 20.3: Noteworthy Events of the WebPartManager Class

WebPartZoneBase zone, This event indicates that the control is added successfully.

WebPartAdding Initiated when a dynamic Web Parts or server control is added to a

WebPartZoneBase zone at run time. This event indicates that the control is added
successfully.

WebPartClosed Initiated when a WebPart control is deleted from a Web page.

WebPartClosing Initiated during the process of deleting a WebPart control from a Web page.

WebPartDeleted Initiated after a Web Parts or server control is deleted from a WebPar t ZoneBase zone.

WebPartDeleting Initiated when permanently deleting an instance of a dynamic WebPart control from a
WebPartZoneBase zone.

WebPartMoved Initiated when the location of a Web Parts or server control on a Web page has
changed.

WebPartMoving Initiated when a Web Parts or server control contained in the WebPartZoneBase zone

is in the process of moving.

WebPartsConnected Initiated after a connection between WebPart controls has been established.

WebPartsConnecting Initiated during the process of establishing a connection between WebPart controls in a
WebPart2oneBase zone.

WebPartsDisconnected Initiated during the termination of the connection between two WebPart or server
controls.

WebPartsDisconnecting Initiated during the process of terminating the connection between WebPart or server
controls,

Using the WebPartManager Class

The WebPartManager class allows users to toggle between various display modes. These display modes help

the user to perform different actions on the Web page, such as changing the layout of a Web page or editing

controls, and the rest. The WebPartManager class has the following five display modes:

O BrowseDisplayMode—Specifies the default display mode for pages that contain Web Parts controls

O CatalogDisplayMode—Specifies the display mode in which a catalog of controls is visible. A user can
add controls to a Web page from the catalog

O ConnectDisplayMode —Represents the display mode in which the connection Ul is visible and where
users can manage the connections between the contrals of Web page

0 DesignDisplayMode—Represents the display mode in which the user can modify the layout of a Web
page

O EditDisplayMode—Specifies the display mode in which the user can change the appearance, properties,
and behavior of server controls

Creating the WebPartManager Control in Code

As discussed in this chapter, you can create a WebPartManager control directly by using its class hierarchy. The
WebPartManager control does not have any visual appearance in a Web page; therefore, the display mode
property of the WebPartManager control is set to a Label control’s Text property to see the corresponding
default mode.

To learn how to create the WebPartManager control through the control’s class hierarchy,
let’s create an application named WebPartManagerControlAppVE. You can find
the code of WebPartManagerControlAppVB application in the Code\ASP.NET\Chapter

759

Chapter 20

20\WebPartManagerControlappVe folder on the CD. Listing 20.1 shows the complete code for the
Default.aspx page of WebPartManagerControlAppVE website:

Lisﬁng 20.1: Showing the Code for Default . aspx Page

= i Page. "va" Autobventiwireups="false": cadeﬁlea“aefau}t aspx.vb™
:nheritsng_aeﬁu'lt" N L :
0 Transit%paa]{{sn"

<IDOCTYPE html PUBLIC "-//W3C//07D XHIML 1.
¥ L 7w .prg/m/xhtﬁ 1/0TD/xhtm -transit1nna1

'<htm1 m‘lns::"http oo w3 org/lS%/xhtnﬂ“ Ea
<head id="Headl". runat="server"s
<titleswebPartManager Control Exauple:{hﬂb
ek hre&"sry}eshtet €ss™ rela” sty?_e_shee_t;f’_ty'
.‘r<lheaﬂb ; ST e
_ <fam 16-"fom1" runat='-‘s_erve__r_“>
: i . AR
S <div 'idz”hea‘der">
="<d‘ht 1d=“sidebar"> ST
_<dw i nav s

eft@ﬁt?cﬁs"-fs

: '.uebpart uanager-."z.

1 </asp Labeb ' R I

.-:asp Pane'i 10="Panel 1 unat== server™ KackCcﬂ r"s"#FFEDCO" LR
" Bordercolor="#FFC080" Bordersry1e= .Double’
©Height="129px" width="320px"> -
-:g&;bsp, whsp. Snbsp;

i i dnbsp; <asp: Labe1 m= l.a.be
o so‘fd::"“rrue ForeColnr="nNavy": .
Text="WEBPARTMANACER -CREATED1 711
<ioVisiblesTFalsel></asp; Labe'l><br f>
<br_ />
'<asp Button ID="Button2" rinats"servar” BackCoTGrs“#FFCOBO" Font- -
80Yd="True" ForeColor=" #0000C0™ Text-—-"msp?ayﬂode wim:hs"znpx" o
. Anbsp; .

<aspiLabel Ip="Label2" runat=" server" 'Fpnt Qcﬂdp"]'rue .
ForeCalor="#0000C v-isfb'lé="_t=a'fse ></asp Labe1>
 :

—Snspy dnbspye/aspiranets -

Lefdive
fdivs
<div id="footer"s
«<p class="left"> G s
ATl content copyr’1ght ©. Kogent Sa'iutions e, <fp>"
wefddve : e
: v fdives
; ~</f‘£mn>
- </hody>
</htmls : .
Listing 20.2 shows the complete code for the code-behind file of WebPartManagerControlAppVE website:

! runat="server” Fonte ...

760

Introducing Web Parts Controls

Listing 20.2: Showing the Code for the Code Behind File:
Partial: Class _pefault -
Inharits System.web. UI Page

Protected Sub Buttonz_ch;k(ayvai .sender As ohject ByVa1 e As
System. EventArgs) Haridles Burton2.cT4

Str o= ‘Wpm, bi splayMode . Name

Label2.Text = str- .- :
. Labell, V151b1e = True. o o
- End Sub' : '
“end Class

Now, run the website and click the DlsplayMode Button; the output will be as shown in, Flgure 20. 2

it Page = g Took =

Done T W eemetPoecteitiodeOn KL v

Flgure 20 2 The WebPartManager Control Example

The ProxyWebPartManager Control

As you know, a Web Parts application {an application using Web Parts conirols) can contain a single
WebPartManager control for each Web page, which manages all the Web Parts controls on that page. You also
know that if the Web Parts application contains a master page and the WebPartManager control is placed in the
master page, all the content pages (Web pages inherited from the master page) use the WebPartManager
control of the master page to manage their Web Parts controls. To do this, each content page declares a static link
to connect to the WebPartManager control of the master page. To declare a static link in the content page, you
need to add the ProxyWebPartManager control and the <asp:WebPartConnection> element.

The <aspiWebPartConnection> element is derived from the <staticconnecticns> element, which is
further derived from the <asp:WebPartManager> element. In this way, the ProxyWebPartManager control
imitates the WebPartManager control of the master page in the content page. However, remember that, because
the WebPartManager control is already declared in the master page once, you cannot declare additional
WebPartManager controls in the content pages. If you do want to declare more WebPartManager controls,
you have to use the ProxyWebPartManager control. This is how a ProxyWebPartManager control imitates a
WebPartManager control residing in a master page.

You can add a ProxyWebPartManager control to a Web page by dragging and dropping the control from the
Toolbox to the Design view. Figure 20.3 shows the ProxyWebPartManager control in the Design view:

761

Chapter 20

F igura 20.3: The ProxyWebPartManager Control
Although the ProxyWebPartManager control is used to replace the WebPartManager control for declaring
static connections, the ProxyWebPartManager class is not derived from the WwebPartManager class. Rather, it
is derived from the Control class.

The ProxyWebPartManager control is an object of the ProxyWebPartManager class. You can also create the
ProxyWebPartManager comtrol by using the ProxyWebPartManager class, which belongs to the
System. Web assembly The namespace hlerarchy of the ProxyWebPa rtManager class is:

The ProxyWebPartManager class inherits various properties -from the Control class, such as
EnableTheming, Visible and so on. The ProxyWebPartManager class uses these properties by overriding
them. In addition to various inherited properties, the ProxyWebPartManager class also contains a non-
inherited property, called StaticConnections. The StaticConnections property gets a collection of static
connections declared within the <asp:ProxyWebPartManager> element on a content page. Similar to
properties, the ProxyWebPartManager class also inherits various events and methods from the Cont rol class.

The syntax to declare the ProxyWebPartManager control is:

The WebPartZone Control

Technically, the WebPartZone control is used to create a region on the Web page where Web Parts or server
controls can be relocated, maximized, or minimized according to the requirements specified by a user.

The WebPartZone control is an object of the WebPartZone class that permits you to create zones on a Web
page. After the zone is created, you can place any server control in the zone.

WebPartZone controls are used to design the user interface (UI) of Web Parts applications. These controls
enable you to host ASP.NET-based server-side controls on a Web page. At runtime, these server-side controls
function as Web Parts controls.

The webPartZone control is an object of the WebPartZone class, which allows you to create zones in Web
pages.

To add a WebPart Zone control to a Web page, drag and drop the control from the Toolbox to the Design view
of an .aspx page. Figure 20.4 shows the WebPart Zone control in the Design view:

The WebPartZone Control

762

Introducing Web Parts Controls

You can also add the WebPart Zone control by inserting the following code in the < form> element of the . aspx
page:

The WebPartZone control also contains the <ZoneTemplate> element, which is used for storing other server controls,
such as Label or Textbox.

The WebPart Zone control is created by using the WebPartZone class of the NET Framework class library. The
WebPartZone class derives most of its functionalities from the base WebZone and WebPartZoneBase classes.
The WebPartZone class is available in the System.Web.UI.WebControls.WebParts namespace. The
namespace hierarchy of the WebPartzone class is:

o

You can use the various properties and methods of the WebPartZone class to use the WebPartz one control
The properties of the WebPartZone class allow you to set the appearance and behavior of the WebPartZone
control on a Web page. The WebPartZone control is the ptimary control to add Web Parts controls on the Web
page. You can add server controls in the WebPart Zone control, which can be added to the Web page.

The syntax for creating a WebPartZone control is:

i D SORFACK. Al AL
Usmg the NET Framework class hbrary, the WebPartZone class is declared as:

Noteworthy methods of the WebPartZone class are listed in Table 20.4:

Table 20.4: Noteworthy Methods of the WebPartZone Class

CreateWebPartChrome Enables derived zones to substitute a custom WebPartChrome object to the

appearance of Web Parts controls in a zone

EditWebPart Initiates the process of editing a selected Web Parts control in a zone

GetlinitialWebParts Owverrides the abstract base method and retrieves the initial set of values of
static WebPart controls contained within a zone’s template

MinimizeWebPart Minimizes a selected Web Parts control in a zone

OnCreateVerbs Raises the CreateVerbs event

RenderDropCue Provides Ul elements to indicate where a Web Parts control is dram*r'd “and
dropped within a zone

RestoreWebPart Restores a selected minimized Web Parts control to the normal state

763

Chapter 20

Noteworthy properties of the WebPart Zone class are listed in Table 20.5:

Table 20.5: Noteworthy Properties of the WebPartZone Class

AllowLayoutChange

Dete

This property also allows you to specify a layout for the Web Parts control

DragDropEnabled Retrieves a value indicating whether or not Web Parts controls can be
dragged and dropped into or out of a zone

EditvVerb Obtains a reference to the WebPartVerb class object to change a Web Parts
control into the WebPartsZene control

ExportVerb Obtains a reference to the WebPartVerb class object to export an XML
definition for a Web Parts control

HelpVerb Obtains a reference to the WebPartverb class object to access help content
for using Web Parts controls in a WebPartZone control _

LayoutOrientation Determines whether the controls in a WebPartZone control are aligned
horizontally or vertically. This property also enables you to specify the
alignment of the Web Parts controls in a WebPart Zone control

MenuCheckImageStyle Determines the image style used as a check mark for a verbs menu of a Web
Parts control in a WebPart Zone control

MenuCheckImagelUrl Determines or specifies a URL for the image used as a check mark for the
verbs menu of a Web Parts control in a WebPart Zone control

MenulLabelHoverStyle Obtains or specifies the styles used to change the appearance of the label of a
verbs menu when the mouse pointer is placed over it

MenulabelStyle Obtains or specifies the style applied to the label of a verbs menu that is
displayed in the title bar of a Web Parts control in a WebPartZone control

MenuLabelText Obtains or specifies the label for the vetbs menu displayed in the title bar of a
Web Parts control in a WebPartZone control

MenuPopupImageUrl Obtains or specifies the URL of the image that represents the verbs menu in
the title bar of a Web Parts control in the WebPartZone control

MenuPopupStyle Obtains the style applied to the verbs menu of a Web Parts control in a
WebPartzone control

MenuVerbHoverStyle Obtains the style applied to change the appearance of the verb displayed in a
verbs menu when the mouse pointer is placed over the verb

MenuVerbStyle Obtains the style for the verb in a verbs menu of a Web Parts control in a
WebPartzone control

MinimizeVerb Obtains a reference to the WebPartVerb class object to minimize a
WebParts control in a WebPartsZone control

RestoreVerb Obtains a reference to the WebPartVerk class object to set the size of a
WebParts control in a WebPartZone contrel to normal

SelectedPartChromeStyle Obtains the style for a Web Parts control in a WebPartZone control

ShowTitleIcons Determines the icons displayed in the title bar of a Web Part control in
WebPartsZone control

TitleBarVerbButtonType Determines the button used for the verbs in the title bar of a Web Parts
control

764

introducing Web Parts Controls

Table 20.5: Noteworthy Properties of the WebPartZone Class

TitleBarvVerbStyle Obtains the style for the verbs displayed in the title bar of a Web Parts control

VerbButtonType Retrieves or sets the type of button associated with the verbs in the title bar of
a Web Parts control

WebPartChrome Retrieves a reference to a WebPartChrome control that determines the
peripheral rendering of a Web Parts control in a zone

WebParts Retrieves a collection of Web Parts controls within a zone

WebPartVerbRenderMode Retrieves or sets a value indicating how the verbs should be rendered on

Web Parts controls in a zone

ZoneTemplate Retrieves or sets the template reference containing controls in a Web page

Noteworthy event of the WebPartZone class is listed in Table 20.6:

Table 20.6: Noteworthy Event of WebPartZone Class

CreateVerbhs Initiated when the verbs are created for a zone derived from the i

WebPartZoneBase class

Creating the WebPartZone Control in Code

As learned earlier, the WebPartZone control is used to create a region where Web Parts or server controls can
be relocated, maximized, or minimized by a user. Now, let's work with the WebPartZone control
programmatically. After creating the various properties of a WebPartZone control, you can use the
WebPartZone class to access and change these properties without using the Ul at all.

Now, let's create a website named WebPartZoneAppVB and learn how to use the WebPartZone control in the
application. You can find the code of WebPartZoneAppVB application in the Code\ASP.NET\Chapter
20\ WebPartZoneAppVB folder on the CD. Listing 20.3 shows the complete code for the Default.aspx page of
the WebPartZoneAppVB website: B
Listing 20.3: Showing the Code for the Default.aspx Page

Chapter 20

Listing 20.4. shows the complete code for the code-behind file of the Webpa rt ZoneAppVE website:
Listing 20.4: Showing the Code for the Code-Behind File:

Now, run the application, enter Web Part Header in the Enter Header Text TextBox,

and click the Create
WebPartZone button. You will find the output as shown in Figure 20, 5:

766

Introducing Web Parts Controls

Web par Header

Create WabPanZone

e -

@ . él. ,,,,,,6;,,,,,,. .

Figure 20.5: Output of the WebPartZone Control Example

The CatalogZone Control

You can personalize a website by adding the catalog functionality. The catalog functionality allows you to
manage Web Parts controls efficiently. You can create a catalog-enabled Web page by adding a CatalogZone

control to it

A CatalogZone control helps to create a catalog of Web Parts controls. This allows a user to add or update the
controls easily on a Web page. To add a CatalogZone to a Web page, simply drag and drop the CatalogZone
control from the Toolbox to the Design view of an .aspx page. Figure 20.6 shows the CatalogZone control in

the Design view:

Wbk srthlacager - WebPorttiansgert 5
Figure 20.6: The CatalogZone Control

767

Chapter 20

You can also add the CatalogZone control by inserting the following code in the < form> element of the . aspx
page:

<%@ -Page Language="VB'"%

S T bt iy

<f3:m id="forml" runat="server"s _
piwebPartManager ID="webPartManagerl” rumat="serve
.30 <faspiwebPartManagers -1 - Gkl
*. <asprCatalogZone Io="catalogzonel" runat="server
cem s < fasprcatalogzones RS
<fm -
</badys s
When you add a CatalogZene control to a Web Page, a new mode, called the Catalog mode, appears in the
Select mode list on the Web page. The CatalogZone control is displayed when the Web page is in Catalog
mode allowing users to add controls on the Web Ppage contained in it. The CatalogZone control is a template
control. Therefore, the control needs a template section, which is represented as the <ZoneTemplate> element
inside the CatalogZone section. Inside the template section, you can place several CatalogPart controls,
where every CatalogPart control works as a container control for server controls. These server controls can be
added on a Web page. The CatalogZone control is an object of the CatalogZone class. Remember that you
can view a CatalogZene control on a Web page only after changing the display mode of the Web page to the
CatalogbhisplayMode mode.

The CatalogZone control is created by using the CatalogZone class of the NET Framework class library. This
class is available in the System.Web.UI .WebControls.WebParts namespace.

The inheritance hierarchy of the CatalogZone class is:

g §y5fém.‘iiéb.U.I".wehcoptr"q]_s -WebControl L

o, System.web.uI.webControls,Compasitecon

- System.web.UT.webContrals ,webParts. webzone

System.web,UI.webControls.Webparts .ToolZone

' System.i'ueb.u_r.webcnn_tro]s._webparts; atatogzonegase |
System.web.vI.webControls. webParts .CardlogZone

Noteworthy methods of the CatalogZone class are listed in Table 20.7:
Table 20.7: Noteworthy Methods of the CatalogZone Class

B 2 e 2 i ?
Creates the CatalogPartChrome object used to render the Ul elements of
CatalogPart controls in a zone.

CreateCatalogPartChrome

CreateCatalogParts Creates instances of all CatalogPart controls declared in a CatalogZone
control.

InvalidateCatalogParts Deletes all CatalogPart controls associated with a CatalogZoneBase
zone.

LoadPostData Determines the Web Parts controls that are selected in the CatalogZone

control when a Web page is posted back to a Web server. The selected Web
Parts controls are added to the Web page.

RenderCatalocgPartLinks Creates the links to every CatalogPart control in a CatalogZoneBase
zone,

768

Introducing Web Parts Controls

Noteworthy properties of the CatalogZone class are listed in Table 20.8:

Table 20.8: Noteworthy Properties of the CatalogZone Ciass

SelectedCatalogPartID Retrieves or initializes a string to identify the currently selected
CatalogPart control in a zone

SelectedPartLinkStyle Retrieves an object that contains style attributes for the currently selected
CatalogPart control in a zone

SelectTargetZoneText Retrieves or sets the text next to a server control in the catalog UL This allows
a user to select the zone for adding selected controls

ShowCatalogIcons Retrieves or sets a value to indicate whether server controls in a
CatalogZone control display their associated icons or not

Creating the CatalogZone Control in Code

As discussed in this chapter, the CatalogZone control is used to create a catalog of Web Parts controls. This
control also allows the user to add or update the controls on a Web page. Similar to other Web Parts controls,
you can also create the CatalcgZone control by using classes. You can set most of the properties of the
CatalogZone control by declaring the CatalogZone class.

To understand the use of the CatalogZone control, let’s use it in an application. For this, let’s create an
application named CatalogZoneAppVE. You can find the code of CatalogZonehppvE application in the
Code\ ASP.NET\ Chapter 20\CatalogZoneAppVB folder on the CD. In this application, we add three label
controls to display the ZoneSelect, Mode and EmptyZoneText controls on the click event of the Button
control. Listing 20.5 shows the complete code for the Default.aspx page of the CatalogZoneAppVB website:

Llshng 20 5 Showmg the Code for the De £ ault aspx Page

769

Listing 20.6 shows the complete code for the code-behind file of the CatalogZoneAppVE website:
Listing 20.6: Showing the Code for the Code-Behind File:

770

Introducing Web Parts Controls

Now, run the application and click the Property Settings: Custom link. You will find the output as shown in
Figure 20.7:

Pt

PR Wy |

e @ e b i v
fon e g PR &

Figure 20.7: Output of the CatalogZone Control Example

The DeclarativeCatalogPart Control

The DeclarativeCatalogPart control is one of the three controls {the other controls are
PageCatalogPart and ImportCatalogPart) used together with the CatalogZone control. The
DeclarativeCatalogPart control is used to modify the functionality of a Web page. This control displays a
list of Web Parts controls and other server controls, when the website is in the CatalogDisplayMode mode. A
user can add controls from this catalog onto the Web page.

The DeclarativeCatalogPart control is an object of the DeclarativeCatalogPart class. You can add a
DeclarativeCatalogPart conirol to an . aspx page by dragging and dropping the control from the Toolbox
to the CatalogZone control in the Design view of an .aspx page. While adding a DeclarativeCatalogPart
control to a Web page, ensure that the Web page contains the CatalogZone control,

tw;'zm‘ Mame vﬂj ..g.”_“;.i o

Figure 20.8: The DeclarativeCatalogPart Control

771

Chapter 20

You can alsc add the DeclarativeCatalogPart control by using the following code in the <form> element
of the . aspx page:
asp:cata]"glﬂhe AD='C

</zoneTem¢Tate>

<fasp: cata1ogzone> . :
The DeclarativeCatalogPart control is created by usmg the DeclaratlveCatalogPart class of the NET
Framework class library. This class is available in the System.Web.UI.WebControls.WebPartsnamespace.

The inheritance hierarchy of this class is:

System.0hject _
Systen.web.uI.Contral G

System.Web ul. WEbentro'ls\.webcont 0

' System web. UI.WebCont

3 taiug?art

Now, let’s 1dent1fy the syntax for declarmg the DeclaratlveCatalogPart control by using the

DeclarativeCatalogPart class.

The syntax for declaring the DeclarativeCatalogPart control is:
ofmocontiol. -bpeclarativecatiloghart ‘as: DeglarativeCaralogpait B A R
You can create a user control made of one or more server controls and add it to the
DeclarativeCatalogPart control. To do so, you have to set the WebPartsListUserControlPath
property of the DeclarativeCatalogPart class to the path of the user control. A user control is preferred to
adding server controls, because you can display the catalog of Web Parts controls on multiple pages of a website
by using the same user control. When the Web Parts controls in a user control are modified, all the catalogs
associated with the user control are updated automatically by the DeclarativeCatalogPart control.

Noteworthy methods of the DeclarativeCatalogPart class are listed in Table 20.9:

Table 20.9: Noteworthy Methods of the DeclarativeCatalogPart Class

ApplyStyle Applies the specified style to the style elements of a WebPart control

GetAvallableWebpartsDescriptions Provides details (such as ID and the value of other properties) of a WebPart
control that are included in the catalog displayed on a Web page

CopyBaseAttributes Copies the AccessXey, Enabled, ToolTip, TabIndex, and Attributes
properties from the specified server control to the server control from
which this method is called. These properties and their values are specified
as a parameter

RenderBeginTag Provides the beginning tag for a Panel control to add a panel on which
server controls can be added

RenderEndTag Provides the ending tag for a Panel control indicating the end of the panel

GetWebpart Provides a reference to a Web Parts control based on the description passed

to the GetwWebpart method

MergeStyle Adds the style elements passed as parameters to a Web Parts control

772

Introducing Web Parts Controls

Noteworthy properties of the DeclarativeCatalogPart class are listed in Table 20.10:

RccessKey

Table 20.10: Noteworthy Properties of the DeclarativeCatalogPart Class

Represents a keyboard shortcut key with which you can access a

DeclarativeCalatlogPart control
BackColor Specifies or determines the background coler of a WebPart contrel
ChromeType Determines or specifies the border of a WebPart control
ChromeState Determines whether a WebPart control is in the minimized or normal state
ControlStyle Determines the style of a WebPart control
ControlStyleCreated Determines whether a style has been indicated for a WebPart control by using
the ControlStyle property
HasAttributes Determines whether a WebPart control has attributes set or not

WebPartsListUserControlPath

Determines or specifies the path of a user control that contains WebPart
controls for a catalog

WebPartsTemplate Specifies or determines a template reference for containing WebPart controls
of a catalog

BorderWidth Specifies or determines the width of the border of a WebPart control

CssClass Specifies or determines the Cascading Style Sheet (C55) class for a WebPart
control

Font Determines the font of a WebPart control

ForeColor Specifies the foreground color of a WebPart controt

GroupingText Specifies a caption for the controls contained in a control

Height Specifies the height of a WebPart control

HorizontalAlign Determines the horizontal alignment of the content ina Panel control

ScrollBars Determines and specifies the setting for the scroll bars, such as their
appearance and position

TabIndex Determines the tab index of a WebPart control

ToelTip Specifies the text that is displayed when the mouse pointer is placed on a
WebPart control

Width Specifies tHe width of a WebPart control

Wrap Determines whether the text displayed in a control should wrap or not

BackImageUrl Specifies the URL of the image displayed in a control

These properties are not used by the Web Parts control set when rendering & DeclarativeCalalogFart control. The
property is overridden only for the purpose of preventing it from appearing in Microsoft Visual Studio 2008 designer

tools.

The PageCatalogPart Control

The PageCatalogPart control, along with the DeclarativeCatalogPart and PageCatalogPart controls,
is used with the CatalogZone control to add a specific functionality to the catalog section of a Web page. The
PageCatalogPart control allows users to restore previously deleted WebPart controls of a Web page. This is
the only way users have to restore the deleted Web Parts controls. The PageCatalogPart control adds a list of

773

Chapter 20

check boxes to the Catalog zone controls corresponding to each deleted Web Parts control. To restore these

controls on the Web page, users simply need to select the required check box and a Web part zone where the
Web Parts control is to be added, and click the Add button.

To add the PageCatalogPart control to the CatalogZone control, drag and drop the PageCatalogPart
control from the Toolbox to the CatalogZone control in the Design view of an .aspx page. Figure 20.9 shows
the PageCatalogPart control inside the CatalogZone control in the Design view:

sy 5 .S
| - Canlog Zome [T

[Page Catnlog
- Wbt 1

I WebPan
. 4 WetBat 1

AN P

o S

Figure 20.9: The PageCatalogPart Control
You can also add the PageCatalogPart control using the following code in the < form> element of the . aspx
page:

The PageCatalcgPart control is an object of the PageCatalogPart class. The PageCatalogPart control is
associated to the PageCatalogPart class, which provides the same events, methods, and properties as those
provided by the CatalogZone class.

The inheritance hierarchy of the PageCatalogPart control is:

g e
@

...... . =

You can declare the PageCatalogPart class to add a PageCatalogPa
PageCatalogPart class is:

Creating the PageCatalogPart Control in Code

As learned earlier, the PageCatalogPart control is used to restore previoysly deleted Web Parts controls of a
Web page. Now, let’s learn how to create a PageCatalogPart control. For this, create an application named
PageCatalogPartAppVB and add four label controls to display the Chromestate, ChreomeType, title and
view-state properties of the PageCatalogPart class, when a user clicks the But ton control. You can find
the code of PageCatalogPartAppVB application in the Code\ ASP.NET\Chapter 20\PageCatalogPartAppVB

ragecate $ ar i
rt control. The syntax to declare the

L W E e S

'f‘

774

Introducing Web Parts Controls

folder on the CD. Listing 20.7 shows the complete code for the Default.,aspx page of
PageCatalogPartAppVB website:

isting 20.7: Showing the Code for the Default.aspx Page

iy

775

i e

1

Figurse 20.10: Output of the PageCatal

The ImportCatalogPart Control

The ImportCatalogPart control imports the description file of a Web Parts control or server control that is
used as a Web Parts control. This enables the server control to be added to a Web

settings. The

776

ogPart Contrel Example

page with pre-assigned
description file enables users to share the settings of Web Parts controls. The

Introducing Web Parts Controls

ImportCatalogPart control is the third control (the other two being DeclarativeCatalogPart and
PageCatalogPart), which is used with the CatalogZone control to add a specific functionality to the catalog
section of a Web page. This control provides you with options that allow you to browse and upload a
description file required for importing a WebPart control.

The ImportCatalogPart control is an object of the ImportCatalogPart class.

A description file is an XML file with a .\WebPart extension. It contains property values, state data, and reference
to the assembly or source file. If the properties of a Web Part control are customized, the description file contains
values for these properiies as well,

You can add an ImportCatalogPart control to a Web page by dragging and dropping it from the Toolbox to
the CatalogZone control in the Design view of an .aspx page. Figure 20.11 shows the ImportCatalogPart
control inside the CatalogZone control in the Design view:

! [Coalog Zooe Closel2i
lmperted Web Pan Catalog
Tope & e nmne | WebPart) or click "Browse” 1o jocate 3 Web Part.
B 1
, {Once you bane selected a Web Part file to import, click the Upload tatvon ||
| Uplasd
Impated Web Pant

I~ WebPart }

| Akt [T o 2] e cione |

Split 9 Source P et P

Figure 20.11: The ImportCatalogPart Controi
You can also add the ImportCatalogPart control by using the following code in the <form> element of the
.aspx page:

The ImportCatalogPart control is created by using the ImportCatalogPart class of the NET Framework
class library. This class is available in the System.Wel . UI.WebControls.WebParts namespace.

The inheritance hierarchy of the ImportCatalogPart class is:

- System. object

. ERE N - N ki EA Lt had
The syntax of the ImportCatalogPart control is:

Chapter 20

You can use the various properties and methods of the ImportCatalogPart class to handle the
ImportCatalogPart control. The properties of the ImportCatalogPart class allow you to specify the
appearance and behavior of a zone on a Web page. The properties of the ImportCatalogPart control cannot
be inherited by the derived classes of a base class. Noteworthy methods of the ImportCatalogPart class are
listed in Table 20.11:

Table 20.11: Noteworthy Methods of the importCatalogPart Class

GetAvailableWebPartDescriptions Retrieves a description of WebPart controls of a catalog

GetWebPart Retrieves a WebPart control based on a description passed as a parameter

Noteworthy properties of the ImportCatalogPart class are listed in Table 20.1%:

Table 20.12: Noteworthy Properties of the importCatalogPart Class

Retrieves or sets a text message that informs users to browse to the location of
a description file

BrowseHelpText

ImportedPartLabeiText Retrieves or sets the text displayed after a user imports a description file to
represent or describe an imported control in the catalog of imported controls

PartImportErrorLabel Text Retrieves or sets an error message that is displayed if an error occurs during
the import process

UploadButtonText Retrieves or sets the text for the But ton control that starts the upload process

of a description file

UploadHelpText Retrieves or sets the text of a message that enables the user to upload a
description file

The EditorZone Control

Till now, you must have got some idea of important Web Parts controls. Now, suppose you want to change the
appearance of a Web page. To do so, you will obviously go to the properties of the Web page to make the
changes at design time. However, instead of this traditional approach, you can use a Web Parts control called
Editorzone. The EditorZone control is one of the primary editing controls used to change the appearance,
format, and structure of Web pages containing Web Parts controls, at run time. In addition, you can use the
EditorZone control to change the behavior and content of Web Parts controls. The EditorZone control is
visible in the edit mode of the Web page. This control contains various EditorPart controls, such as
AppearanceEditorPart, BehaviorEditorPart, which are used to customize the Web page. The
EditorZone control is an object of the EditcorZone class.

To add an EditorZone control to the Web page, drag and drop the EditorZone tool from the Toolbox to the
Design view of an . aspx page. Figure 20.12 shows the EditorZone control in the Design view:

778

introducing Web Parts Controls

You can also add an EditorZone control by using the following code in the <form> element of the.aspx page:

ore §

You have o use the <ZoneTemplate> element inside the EditorZone control for the proper working of the EditorZone
control.

The EditcorZone control is created by using the EditorZone class of the NET Framework class library. This
class is available in the System.Web.UI.WebControls.WebParts namespace.

The inheritance hierarchy of the EditorZone class is:

The syntax to declare the Editorzone control is:
Spimeeditork e et tor2 LR
Noteworthy methods of the EditorZone class are listed in Table 20.13:

Table 20.13: Noteworthy Methods of the EditorZone Class

AddAttributesToRender Adds HTML attributes and styles provided to the specified

System.Web.UI.HtmiTextWriter class

CreateControlStyle Creates the style object, used by the WebControl class to execute all the properties
related to the style

CreateEditorPartChrome Retrieves a reference to an EditorPartChrome object, which provides the peripheral Ul
elements (such as a border, title, and icons) residing around an Edi tor ZoneBase zone

CreateEditorParts Creates all EditorPart controls specified in a zone template in page persistence format

InvalidateEditorParts Removes all EditorPart controls associated with an EditorZoneBase zone

RaisePostBackEvent Performs actions related to the verbs menu of an editor zone, or invokes an event that
responds back to the server

RenderBody Overrides the base method to leave the body area of a zone, which is obtained from the
EditorZoneBase class

RenderContents Provides the whole content of a zone control between the beginning and ending tags of
the specified HtmlTextWriter class

RenderFooter Provides verbs in the footet of a ToolZene control by overriding the base method

RenderHeader Provides specialized rendering for the header area required by ToolZone controls, by
overriding the base method

Close Ends the process of modifying Web Parts controls and returns the browse mode of a Web
page

RenderVerb Provides a verb to a ToolZone control

RenderVerbs Provides verbs to apply at the zone level

Noteworthy properties of the Edi torzone class are listed in Table 20.14:

779

Chapter 20

Table 20.14: Noteworthy Properties of the EditorZone Class

ApplyVerb Retrieves a reference to a WebPartVerb object, which allows you to modify a
Web Parts control in the edit mode

AssociatedDisplayMaodes Retrieves the objects of the WebPartDispal yMode class activated when a
ToolZone control is present on a Web page

CancelVerb Retrieves a reference to a WebPartVerb object, which allows you to cancel the
modification you made to a control in the edit mode

EditorPartChrome Retrieves a reference to an instance of the EditorPartChrome class related to
an EditorZocneBase zone

EditorParts Retrieves all EditorPart controls contained in an Edi torZoneBage zone

EditUIstyle Retrieves the style attributes for the controls contained in a Too1Zone control

EmptyZoneText Sets or retrieves a message text, which appears when a zone is empty and has no
controls : YL

EmptyZoneTextStyle Retrieves the style attributes for text in an empty zone

ErrorStyle Retrieves the style attributes of an EditorzZone control for displaying an error
message if the control is not loaded or created

ErrorText Retrieves or sets the text to display an error message in the editing Ul

FooterStyle Retrieves the style attributes for the footer area of a zone

HeaderCloseVerb Retrieves a reference to a WebPartVerb object in the header of a ToolZone
control to close the control

HeaderStyle Retrieves the style attributes for the header area of a zone

HeaderText Retrieves or sets the text for the header area of a zone

HeaderVerbStyle Retrieves the style attributes of all the header verbs displayed in a ToolZone

’ control

InstructionText Retrieves or sets the text to instruct users how to use a Tool Zone conirol

InstructionTextStyle Retrieves the attributes for the text displayed at the top of a Teol Zone control

LabelStyle Retrieves the style attributes for the labels that appear in the editing controls of a
TaolZone control

ORVerb Retrieves a reference to a WebPartverb object to apply editing changes to a
control and hide the editing Ul

Padding Retrieves or sets the attributes related to cell padding in a table containing Web
Parts controls

PartChromeStyle Retrieves the style attributes for the borders of Web Parts controls contained in a
zone

PartChromeType Retrieves or sets the border type of Web Parts controls

PartStyle Retrieves the style attributes for the border and content of Web Parts controls

PartTitleStyle Retrieves the style attributes for the title bar of Web Parts controls

VerbButtonType Retrieves or sets the button to represent the verbs in a zone

VerbStyle Retrieves style characteristics for the Ul of verbs of Web Parts controls

ZoneTemplate Provides a template to add child controls to an EditorZone control

780

Introducing Web Parts Controls

Creating the EditorZone Control in Code

As you know, the EditorZone control is used to change the appearance, format, and structure of Web pages
containing Web Parts controls at runtime. The control can be created by simple drag and drop operations. In the
following example, we show another way of creating this control, that is, the class declaration method. For this,
create an application named EditorZoneAppVB. You can find the code of EditorZoneAppvVB application in
the Code\ ASP.NET\ Chapter 20\ Edi torZoneappVB folder on the CD. Listing 20.9 shows the complete code for
the Default.aspx page of EditorZonehAppVB website:

Llatmg 20 9 Showmg the Code for the Def ault aspx Page

m-m : 1.0 ‘i‘ransit'ionall Eﬁ"
i trans‘:tmnﬂ dt e

<t1t1eﬁ‘tﬂ'itm‘mné 'contm‘i Mp‘[ﬁ;ﬁﬂb ot e
dink ﬁreﬁ- Sty'tesheet.css r&]:"sty}gsmt type="r.ex<.: {css:‘ h

781

Chapter 20

= =hr /s
ﬁasp*Labe'I “ID=="Labe16"
1ine="Yrye" Fored

Listing 20.10 shows the complete code for the code—.b.e.hind. file of EditorZoneAppVB website:
Listing 20.10: Showing the Code for the Code-Behind File:

Browse Mode;

Emply Zone Text: Editor Zone contalns we Editor Parts.

Heiay Toxt: Editor Zone

AT A R T 32 7 A T P AR T 1 B e e R g

Figure 20.13: Qutput of the EditorZone Control Example
782

Introducing Web Parts Controls

The LayoutEditorPart Control

You can use the LayoutEditorPart control to create a full-fledged layout editor for Web Parts controls. Web
Parts controls can have their respective LayoutEditorPart controls associated with them. To change the
layout of a Web Parts control, simply make the required changes in the LayoutEditorPart control associated
with the Web Parts control. :

The LayoutEditorPart control is visible only when a Web page is in the edit mode. In this mode, you can

select and change the properties of a Web Part control. The LayoutEditorPart control offers the following

three options to modify a Web Parts control:

O ChromeState —Gets or sets the current state of a Web Parts control, which can be normal or minimized.

O Zone—Sets the WebPart ZoneBase zone, which consists of the Web Parts control you want to modify.

Q Zonelndex—Sets the index position of Web Parts controls that reside in a WebPartZone control. This
option allows you to determine the specific position of a Web Parts control within the WebPartZone
control.

You must use the LayoutEditorPart control in page persistence format. This format enables the

LayoutEditorPart control to retain its property values between browser sessions. To do this; however, you

need to declare the <asp: LaycutEditorPart> element inside the <ZoneTemplate> element.

To add a LayoutEditorPart control to a Web page, drag and drop a LayoutEditcrPart control from the

Toolbox to the Design view of an .aspx page. Figure 20.14 shows the LayoutEditorPart control inside an

EditorZeone control in the Design view:

Figure 20.14: The LayoutEditorPart Control
You can also add the LayoutEditorPart control by using the following code in the <form> element of the
.aspx page:

2 Etifea

The LayoutEditorPart control is an object of the LayoutEditorPart class.

783

Chapter 20

If you place LayoutEditorPart controls in any other zone except the EditorZone control, the designer generates an error.

The LaycutEditerPart control is created by using the LayoutEditorrart class of the NET Framework
class library. The LayoutEditorPart class allows you to modify the layout of the associated Web Parts
control. The LayoutEditorPart class is available in the System.Web.,UI.WebControls,WebParts
namespace. The inheritance hierarchy of the LayoutEditorPart class is:

System.web.uI.Control RN
i . System.web.uI.webControls.wabContn
web. UL Webicontrols: pane

The LayoutEditorPart control is associated with the LayoutEditorPart class. This class employs various
methods to perform tasks, such as applying changes and style properties to a Web Parts control and determining
if two object instances are equal. Noteworthy methods of the LayoutEditorPart class are listed in Table 20.15:

Table 20.15: Noteworthy Methods of the LayoutEditorPart Class

ApplyChanges Updates the associated WebPart control properties with the changes made in a
LayoutEditorPart control

SyncChanges Gets the property values from a WebPart control, which is then assigned to the associated
LayoutEditorPart control

Now, let’s take a look at the properties of the LayoutEditorPart class. This class is inherited from the
EditorPart class. The EditorPart class acts as a base class that provides a set of properties and methods to
the LayoutEditorPart class. The LayoutEditorPart class also inherits some of the properties from other
classes, such as Control, Part, and WebControl. The various properties inherited by the
LayoutEditorPart class are Font, Enabled, Page, and Style. Noteworthy properties of the
LayoutEditorPart class are listed in Table 20.16:

Table 20.16: Noteworthy Propeties of the LayoutEditorPart Class

v ¥

DefaultButton Retrieves or specify the ID of default button included in a Pane1 control

Display Retrieves a value that specifies whether the LayoutEditorPart control should be
displayed when the Web Parts control associated with it is in the edit mode

Title Retrieves or specify a string used as a title for the LayoutEditorPart control

The AppearanceEditorPart Control

The AppearanceEditorPart control allows users to edit the properties associated with the appearance of a
Web Parts control on the Web page. The AppearanceEdi torPart control resides in an EditorZone zone and
is visible only when a Web Parts control is selected for editing. The following options are displayed on the
AppearanceREditorPart control:

O Title—Specifies a string value, which appears as a title of the AppearanceEditorPart control

Q Height —Specifies the height of the AppearanceEditorPart control

O Width-Specifies the width of the AppearanceEditorPart control
a

ChromeType—Selects the title and border type (dotted, single line, double line, and so on) of the
AppearanceEditorPart control by using the DropDownList control

784

Introducing Web Parts Controls

Q@ Direction—Selects the direcion (horizontal or vertical) of content flow inside the
AppearanceEditorPart control by using the DropDownList conirol

Q0 Hidden—Hides or displays the AppearanceEditorPart control by using the CheckBox control

To add the AppearanceEditorFart control to the EditorZone control, drag and drop the control from the

Toolbox to the EditorZone control in the Design view of an .aspx page. Figure 20.15 shows the

AppearanceEditorPart control inside the Editor%cne control in the Design view:

B :i Snuru

anure 20.15: The AppearanceEdltorPart Control

You can also add the AppearanceEditorPart control by using the following code in the < form> element of
the .aspx page:

<fasp EditorZaones e : e :
The AppearangeEditorPart control is created by using the AppearanceEdltorPart class of the NET
Framework class library, The AppearanceEditorPart class provides an editor with control to modify the Ul
properties of the associated Web Parts control. The AppearanceEditorPart class is available in the
System.Web.UI.WebContreols.WebParts namespace. The inheritance hierarchy of the
AppearanceEdltorPart class is:

system.abjec SV

The AppearanceEditorPart class contains methods and properties that are used to work with the
AppearanceEditorPart control at runtime. Noteworthy methods of AppearanceEditorPart class are
listed in Table 20.17:

Table 20.17: Noteworthy Methods of the AppearanceEditorPart Class

ApplyChanges Updates the associated WebPart control properties with the changes made in
a AppearanceRditorPart control

785

Chapter 20

Table 20.17: Noteworthy Methods of the AppearanceEditorPart Class

SyncChanges Gets the property values from a WebPart control, which is then assigned to
the associated AppearanceEdi torPart control

Noteworthy properties of AppearanceEditorPart class are listed in Table 20.18:

Table 20.18: Noteworthy Propeties of the AppearanceEditorPart Class

DefaultButton Retrieves or specify the ID of default button included ina Panel control
Title Retrieves or specify a string used as a title for the AppearanceEditorPart
control

The PropertyGridEditorPart Control

The PropertyGridEditorPart control provides a Ul that allows users to edit the custoin properties of a Web
Parts control on a Web page. This control resides in the EditorZone control on the Web page. The
PropertyGridEditorPart contrel is visible only when the Web page is in the edit mode or when the user
selects a Web Parts control for editing.

The FropertyGrideEditorPart control enables users to edit the properties that are marked with the
WebBrowsableattribute attribute in the source code. This attribute specifies whether or not the property
should be displayed in the PropertyGridEditorPart control. After specifying the editable properties, the
PropertyGridEditorPart control creates an editing Ul based on the type of properties to be edited.

To add the PropertyGridEditorPart control to a Web page, first drag and drop an EditorZone control
from the Toolbox to the Design view of an .aspx page and then drag and drop the
PropertyGridEditorPart control tool from the Toolbox to the EditorZone control in the Design view.
Figure 20.16 shows the PropertyGridEditorPart control inside the EditorZone control in the Design view:

Eﬂﬁﬂioﬂt Clase : H
Pn:pchnd““‘“‘“ ----- Py
i

E e e v
i E EnumVakie ¥

,,,,,,,,,, . >

Figure 20.16: The PropertyGridEditorPart Control

You can also add the PropertyGridEditorPart control by using the following code in the <form> element
of the .aspx page:

786

Introducing Web Parts Controls

The PropertyGridEditorpart control is an object of the PropertyGridEditorFart class. This control is
created by using the PropertyGridEditorPart class of the .NET Framework class library. The
PropertyGridEditorPart class enables users to modify the custom properties of the associated
Web Parts or server control. The PropertyGridEditorPart class is available in the
System.Web.UI.WebControls.WebParts namespace. The inheritance hierarchy of the
PropertyGridEditorPart class is:

The syntax of the Prope rtyGrldEdl torPart controi is:

R prONGE AN 88 PrOPRILYGE . , 8
The PropertyGrldEdltorPart class I'ESldeS in the System.Web.UI.WebControls.WebParts namespace
and cannot be inherited. The PropertyGridEditorPart class consists of the Title and Display properties,
The Title property is used to obtain or set a title text for a Web Parts control and the Display property is used
to determine whether the control is displayed when the Web page is in the edit mode or not.

The two important methods in the PropertyGridEditorPart class are ApplyChanges and SyncChanges.
The ApplyChanges method saves the value that a user sets on the PropertyGridEditorPart control to the
corresponding properties of a Web Parts control. The ApplyChanges method is called when the user clicks the
OK or Apply bution on the editing UL The ApplyChanges method returns true if the values from the
PropertyGridEditorPart control are saved to a WebPart control and returns false if the values are not
saved in the WebPart control The SyncChanges method updates the values of the
PropertyGridEditorPart control so that users can edit the values of these properties.

Creating the PropertyGridEditorPart Control in Code

As discussed in this chapter, the PropertyGrideditorPart control is used to edit the custom properties of a
Web Parts control on a Web page. Now, let's learn how to create the PropertyGridEditorPart
control. For this, we create an applicaion named PropertyGridEditorPartAppVB. You can
find the code of PrepertyGridEditorPartAppVB application in the Code\ ASP.NET\ Chapter
20\PropertyGridEditorPartAppvB folder on the CD. You can set the properties of the
propertyGridEditorPart centrol and use the methods of the PropertyGridEditorPart class after
creating the control. Listing 2011 shows the complete code for the Default.aspx page of
PropertyGridEditorPartAppVB website:

Llshng 20 11: Showmg the Code for the Def ault aspx Page
m

787

Chapter 20

‘div id«“cbntent"
: ~msp </p:» ; :
~ediv c1ass="1tem€ontent">
..Antspy s
 ©

<aspii aim _Iox"Label7" ‘rupat="
Forecalars"#J000cn™ ‘rexts“P

ﬁnbsp. Anbspyebr fo T
! tﬂn"-'xﬂ*"ﬂuttonl"

asﬂ Labé‘l To=" Labeu“ FUnatsE"
ForetoTor="#0000C0" Téxt=" “Poo‘?

easprliabel I0-"Laba 3™ runat="
Lo Texte"Label "> /asp: ubeh«:/as

 <br. /:-

<br /o

 B

. dmbsp;. EET R
o ki Sl

iy 1d="footer">)

&p classa"left"s

*A'IT cmtent copyraght q

it

widive

<fdive oo

Ll

<fhnl> : - : : T
Listing 20.12 shows the complete code for the code-behind file of PrOpertyGrldEdl torPartAppVB website:
Listing 20.12: Showmg the Code for the Code-Behind File

= propyrid. Tt
pmpgir‘}&.‘r‘oo?rm " TOOLTIP

788

Introducing Web Parts Controls

. i [FabI3 Text S propgrid. Tootrn. -
&nd Class . o ' T ' :
Now, run the apphcatlon and cllck the Chck Button You wnl] fmd the cutput as shown in Flgure 20 17:

Ohc:mulpmmgdwlmon r‘ﬁoe&'- E

Flgure 20 17 Output of the PropertyGrldEdltorPart Controt Exampla

The BehaviorEditorPart Control

The BehaviorEditorPart control, as the name suggests, provides options that enable users to modify the
behavior of Web Parts controls. This control usually remains hidden and is visible only when a Web page
containing Web Parts controls is in edit mode. Similar to other EditorPart controls, the
BehaviorEditorPart control is also contained inside the EditorZone control,

The various options provided by the BehaviorEditorPart control are:

Q Description —Describes the functionality a Web Parts control in brief

TitleUrl —Specifies the link for additional information about a Web Part control
TitleIconImageUrl - Specifies an image, which appeérs in the title bar of a Web Part control

CatalogIconImageUrl — Specifies an image, which appears as a representative of a Web Parts control in the
catalog of controls

HelpUrl--Specifies the link of the help hle of a Web Parts control
HelpMode —Specifies the type of Ul to display the help content of a Web Part control
Hidden — Hides or displays a Web Parts control

ImportErrorMessage — Retrieves or specifies the error message, which appears when importing a Web Parts
control

W W =]

00 0o

o

ExportMode— Exports the properties of a Web Parts control

AuthorizationFilter —Specifies a string value, Wthh indicates whether you can add a Web Parts control to
a Web page or not

AllowClose —Specifies a value that allows a user to close a Web Parts control on a Web page
AllowEdit —Specifies a value, which allows a user to modify a Web Parts control on Web page
AllowHide - Specifies a value, which allows a user to hide a Web Parts control
AllowMinimize —Specifies a value to minimize a Web Parts control

=}

CoooQo

789

Chapter 20

@ AllowZoneChange —Specifies a value, which indicates whether a Web Parts control can be moved from
one zone to another

To add the BehaviorEditorPart control to a Web page, drag and drop the control from the Toolbox to the

EditorZone control in the Design view of an .aspx page. Figure 20.18 shows the Behavior®ditorPart

control inside the EditorZone control in the Design view:

v

VT b e e SR e bt sl s sl)

Ednor Zone o Closer™r
b Behaviog e
g Dr:cm}hcn

3 } TR e

f) T Lk

"l Tide Jo loom busage Link.

i Catalog [con lmage Link:

Heplok

=
' |1 Help Mode

- [{|1dodat w
| !ml’.nu! Message: N
' |4 Es Modz:]
- [1[Do ner aser -

: |} Athorizasion Fier

i

1 é I Allov Closa
i T Allew Connect
i Alow Bee

"-zcesgn ISk ! Source | 4

Figure 20.18: The BehaviorEditorPart Control

You can also add the BehaviorEditorPart control by using the following code in the <zonetemplate>
elemeni of the EditorZone control on the aspx page
<zoneTemplates - H : o
<asp:Behavioredi torpart ID== Beha\n anth torPartl" runat—"server" />
</zoneTemplate>
The BehaviorEditorPart control is an object of the BehaviorEditorPart «class. The
BehaviorEditorPatt control is used for modifying Ul properties, such as Title, Link, Description, Help
Link, in a Web page. You can add the BehavicrEditerPart control by using the BehaviorEditorPart
class, which belongs to the System.Web assembly. The namespace hierarchy of the BehaviorEditorPart
class is:

System.object

© Systém. ‘web.ut. webContrals .webParts, Editorpart -

- System.web.UI.webControls WebParts. Behamoridnorpart

The syntax of the Behav;orEdltorPart cont'rol is:

~Dim ‘behaviora: s gehdvioreditorrart’ SO i i s

The EditorPart class derives from the Behavi orEdltorPart class, whlch is used to modlfy the properties of

the associated Web Parts control. The BehavicrEditorPart class inherits various methods, properties, and

events from the Control class, such as ApplyStyle, Title, DataBinding. Noteworthy properties of the
BehaviorEditorPart class are listed in Table 20.19%:

790

introducing Web Parts Controls

Tabie 20.19: Noteworthy Propeties of the BehaviorEditorPart Class

DefaultButton Retrieves or specu"y the ID of default button mcluded ina Panel control

Display Retrieves a value that specifies whether the BehaviorEditorPart control should be
displayed when the Web Parts control associated with it is in the edit mode

Title Retrieves or specify a string used as a title for the BehaviorEditorPart control

The ConnectionsZone Control

You can dynamically connect Web Parts controls with each other that reside in the WebPartZoneBase zone
with the help of the ConnectionsZone control. However, to do this, the Web Parts controls must be enabled
for such type of dynamic connection. When you add the ConnectionsZone control to a Web page, a new
mode, the connection mode, appears in the Select mode list of the Web page. The ConnectionszZone control is
an object of the ConnectionsZone class.

While working with the ConnectionsZone control and ConneclionsZone class, you must be aware of two terms, that ig,
Consumer and Provider. A Web Part control that receives data is called a Consumer and a Web Part controf that sends
data to other Web Part control(s) is called a Provider.

To add the Connectionszone control to the Web page, drag and drop the ConnectionsZone control from
the Toolbox to the Design view of an .aspx page. The Design view of ConnectionsZone control is shown in
Figure 20.19:

G D R e e e ereeeereee K

| WenPritBtmager - WenParthimagecl ;

+ Heomesrsion by sdﬁg&ﬂumiwamcmkuchm mum

o]
o

I a:-ngn =Sl Seuce .

Flgure 20.19: The ConnectionsZone (.':ontrol

You can also add the ConnectionsZone control by using the following code in the <form> element of the
. aspx page:

<aspreonnectionszane” Im"cmne;:t'ions?.onel“ runaat’:-"s‘emfer“s

</asp:Connect fonszons -
The ConnectionsZene control is created by using the ConnecticnsZone class of the NET Framework class
library. The ConnectionsZone control inherits from the ToolZone base class, which is available in the
System.Web.UI.WebControls.WebParts namespace. The inheritance hierarchy of the ConnectionsZone
class is:

. -

791

Chapter 20

System.Object

. System.web.uI.Control

system.web. UL, webControls, webcontrol = . A ST R
system.Weh .Ul . webControls. compoS'ltecontro'l _ : :
System.web.UI.webControls.webParts. webZone
System.web.UXl.webhControls.webParts.ToolZone

system.web.UI.webControls.webParts.ConnectionsZone

The syntax of the ConnectionsZone control is:
Dim ConnectionsZonel as new ConnectionsZone

Note 3

To croate a connection between Web Parts controfs, a user needs to swilch to the ConnectionDisplayMode connection
display mode and sefect the connection verb from the Web Part Vierb menu.

Noteworthy properties of the ConnectionsZone class are listed Table 20.20:

i Table 20.20: Noteworthy Properties of the ConnectionsZone Class

ConfigureConnectionTitle

it

Gets or sets the title text of a connection Ul created by a ConnectionsZone control

ConfigureVerb

Gets a reference to a WebPartVerb object. You can use this reference to open the
configuration view in a connection Ul

ConnectToConsumerInstruc
tionText

Gets or sets the text displayed in the section of a connection Ul where users select the
consumer control to connect to the provider control

ConnectToConsumerText

Gets or sets the hyperlink text that users click to select a consumer control for a
connection

ConnectToConsumerTitle

Gets or sets the title text of the section in a connection Ul where users select the
consumer control to connect with

ConnectToProviderInstruc
tionText

Gets or sets the text that is displayed in the section of a connection Ul where users
select the provider control {0 connect to the consumer control

ConnectToFroviderText

Gets or sets a hyperlink text that users click to open and then select a provider
control for a connection

CancelVerb

%
i
i
i

Retrieves a reference to a WebPartVerk object that enables the user to Cance] the
process of establishing a connection
CloseVerb

Retrieves a reference to a WebPartVerb object that enables the user to close the
connection Ul

ConnectToProviderTitle

Gets or sets the title text of the section in the connection Ul where users select the
specific provider control to connect with

ConnectVerb

Gets a reference to a WebPartVerb object to allow two Web Parts controls to connect
with each other

ConsumersInstructionText

Gets or sets the instructional text contained in the consumers section of a connection
Ul when a connection already exists

ConsumersTitle

Gets or sets the title text of the consumers section present in a connection Ul, when a
connection already exists

DisconnectVerb

Gets a reference to a WebFartVerb cbject to enable the user to disconnect two
connected WebPart controls

i ExistingCennectionErrorM
. essage

Gets or sets the message string that is displayed in a connection Ul when an error
occurs in an existing connection

GetFromText

Gets or sets the text present before the name of provider in the connection Ul This

Introducing Web Parts Controls

Table 20 20 Noteworthy Propertles of the ConnectlonsZone Class

i

prov:der is used bva consumer to retneve data

a B A e P, AR 1

GetText i Gets or sets the text present before the name of consumer in the connection UL Thls
consumer retrieves the data from provider

I ks

InstructionTitle Gets or sets the description text for the action performed on a consumer or provider
control in a connection Ul to manage existing connections

NewConnectionErrorMessag Gets or sets a message string that is displayed in a connection UI when an error
e occurs while creating a new connection

NoExistingConnectionlnst Gets or sets the text contained in the body of a connection Ul when there is no
ructionText existing connection associated with a WebPart control

NoExistingConnectionTitl Gets or sets the title text of a connection Ul when there is no existing connection
e associated with a WebPart control

ProviderslnstructionText Gets or sets the instructional text contained in the providers section of a connection
UL, when a connection already exists

ProvidersTitle Gets or sets the title text above in the providers section of a connection Ul, when a
connection already exists

SendText Gets or sets the text present before the name of provider in the connection Ul This
provider sends data to consumer

SendToText Gets or sets the text present in the connection UI before the name of the consumer to

which a provider will send data

All Web Parts controls reside inside the <form> element of an .aspx page. However, there are some Web Parts Controls
that cannot be used alone and require some specific control to work with. For example, the LayoutEditorPart or
BehaviorEditorPart controf cannot be used without the EditorZone control in the <form> element.

Creating the ConnectionsZone Control in Code

We have already discussed how to use the ConnectionsZone class to create the ConnectionsZone control,
Now, let’s create the ConnectionsZone control with the help of the ConnectionsZone class and specify the
various properties of the control. For this, we create an application named ConnecticnsZoneAppVEB. You can
find the <code of ConnectionsZoneAppVB application in the Code\ASP.NET\Chapter
20\ConnecticnsZonedppVB folder on the CD. Listing 20.13 shows the complete code for the Default.aspx
page of ConnectionsZoneAppVB website:

Listing 20.13: Showing the Code for Default.aspx Page
<¥%@ Page Languagez" VB" AutoEvenm renp= a.1se COﬁeF11e="oéfau1t aspx .vb"
Inherits="_Default" %>

. <1DOCTYPE- htm] PUBLTE ™= 1/1‘13‘1'0 XHTML 1.0 Transit‘tonz'l//EN" -
"http: //www. Wi org/TRA htm lfmthtml-transwtim'! utd >
<htm? xm]nsz"http //ww w3 0rg/1999/xh1:m1 " : : .
<head runat="server» .. "
<title>Connectitnszoneg. contro'l Examp'le</t1ﬂe> ke e e
“<link href=" Sty’lesheet css" re'l== sty'iesheet" type== "text/css” /x
«/head>
<body> : . :
<form id="forml" runata'f'serv_er">
<div id="header”s "~ o

<fdiv>
<div id="sidebair">

793

Chapter 20

o <tdiv o ida"nav™>
: mpl :
Ciowfive
Cefdive :
cadiv T mﬂtent >

e < R
' ,dp:»
T g c1ass=”+temcontent > o
Lo dagp iabe] TD=MLabel2' runat="server” Font-‘sowa"'rrue" Font Under}fnem"True“
_ - Farecolor="Navy" Text='ConnectionZone webpart:'></asp:Label>
Teomme e Censpepane] IDs"Panell™ punat=" semr“ BackTolor="#rFFeQco" -
TR Serderst: yle="midge” Height="183px™ width="522px"> R :
LT aspriabel IDa"Labe 11 runat="servert Text="Connéction’ Status"' '
'.._.-;Wtdthu“szsz" Fort-BoTd="Trye" Fontvunderhnez“'rrue“ :
- Forscolors Navy"sdasp Labe'txbr > : . "

 o S
 ,<asp Lahe] ID= Labela"_ ',runat 5erver Text- LabeT"></asp Label>
e Y ’ ']
Ahroly
<aspitabel. IDs"Labqls" runa
Foret:o'fers"na.vy" X
<he. s 0 : :
<asp:Label IRB"Laba'{j_ ;T

’?rue Font-underhm:"‘rrue"
_"></asp'Lahe’l>

><!asp Labeﬂ >&nhsp i

_.:y«:/asp ; La_be]><fa_tsp H _Pa_ne] > -

Llstlng 20.14 shows the complete code for the code—behmd fﬂe of Connectlons ZoneAppvB web51te

Listing 20.14: Showing the Code for the Code- Beh.md Flle
Tnpartial €lass _pefault PR o

“Frherits Systen.web.UL.Page " i
Dig-wpm As:New webPartManager ;-

; Pmtected Sub Page_;.oad{syvﬂ semier As 6b1ect “BYV.

‘ Hand]es Me.Load -

Dim value-As Str'ing .

alue . conn, MOEXisti ngcome

Nol-:nstimmmectz‘anm :
haheB:rex contrNoEx

stem. Eventargs).

- Figure 20.20 shows the output of the Connect ionsZoneAppVB website:

794

Introducing Web Parts Controls

Fe @de Wea Fovamm Togk Hep
Doag | AR Comerherdane ot boimyie

Lannaciion SAtLE:

! :
Sbers e o s st e myom s | splaying a message,

Pl ToU MEy CT8aTE 3 NAW CONNECHN iy eeciTeg the 1‘ " . .
ks stmun i thars ore rompative web Bartm o the pace. | § ' active connection
| available.

Lenneriios Confiewatlon.

BEF L1 T:Configure <annetion
CUSTOME R 3 2 Coinacean

M"_ T ’ A T | uig et ke i G BET I

Figure 20.20: The ConnectionZone Control in Action

Summary

This chapter described the Web Parts controls available with Visual Studio 2008. These Web Parts controls
enable you to create a website that can be personalized at runtime directly through the browser. In addition to a
thorough discussion of the Web Parts controls, which includes a detailed description of their methods,
properties and events, this chapter also shows the use of these controls through sample Web applications.

In the next chapter, we describe how to work with databases in ASP.NET.

Quick Revise

QL.

Ans;

Q2

What are WebParts Controls?

The WebParts controls are objects of WebParts on which the end-user can perform multiple functions,

such as open, close, or minimize a WebPart, according to the requirernent of the end-user. The WebParts

controls enable you to add rich and personalized content and layout to your website and also edit that

content and layout at runtime. A single Web page can have multiple WebParts controls. It is essential to

remember that a Web page containing WebParts is called a WebParts page. There is no other difference

between the simple Web page and WebParts page.

Which WebPart control manages all the WebParts of an ASP.NET website? Enlist all the functions of

this control.

The WebPartManager control manages all other WebParts controls on the Web page. If you create a Web

page by using the WebParts controls, then you need to ensure that the Web page contains a

WebPartManager control before placing any other WebParts control on the Web page. The

WebPartManager control performs the following tasks to control the functionality of the Web page:

O Tracks the controls that provide Web Part features to the web page including such as the

WebPartZone control and ConnectionsZone control.

Provide methods to insert and remove different types of controls on a Web page.

Establishes, monitors, and manages connections between different types of controls.

Enables you to drag controls to different locations on a Web page to customize its appearance.

Provides various views that you can use to change and personalize the properties and behavior of

controls.

0O Enables you to toggle between different views of a Web page. Toggling between views simplifies
certain tasks, such as modifying page layout and editing controls.

O Enables you to define and raise the lifecycle events associated with a WebParts control. The lifecycle
events keep track of a control to determine when it is inserted, moved, connected, or removed from
a Web page.

DoGco

795

Chapter 20

Q3.
Ans:

Ans;

Q5.
Ans:

Q6.
Ans:

Q7.

Qs.
Ans:

z 8

QI0.

Ans:

796

Which WebPart control is used {o change the appearance of the Web page at runtime?

After designing a Web page, you may sometimes feel the need to modify its appearance, such as its color

or style. For this purpose, you can use the EditorZone control, which is one of the primary controls used

for editing the appearance, format, and structure of the WebParts pages. You can also use an EditorZone

contrel to change the behavior and content of the WebParts controls. The EditorZone control contains

various EditorPart controls, such as AppearanceEditorPart and BehaviorEditorPart, which are used to

customize the WebParts pages.

Which WebPart control is used to create a region on a Web page?

The WebPartZone control is used to describe a region on a WebParts page. You can place other WebParts

or standard controls such as Label, Textbox, and Image controls in the region created by the

WebPartZone control. Once the controls are placed in the region they can be relocated, maximized, or

minimized according to the requirements of the end-user.

How can you connect two WebParts controls to share data between them?

The ConnectionsZone control allows you to connect the WebParts controls dynamically with each other.

However, the webParts you want to connect, using the ConmectionsZone control, must be enabled for

such type of connections. The ConnectionsZone control provides a user interface to connect WebParts

controls at run time. The WebPart that receives the data is called Consumer contrel and the WebPart that

sends data is called Provider control.

How can you restore the previously deleted WebParts control on the Web page?

The PageCatalogPart control allows users to restore previously deleted WebParts controls of a Web page.

This control is used along with the CatalogZone control and this is the only way to restore the deleted

WebParts control. The PageCatalogPart control adds a list of check boxes to the CatalogZone control

corresponding to each deleted WebParts control. The users simply need to select the required check box

and a Web part zone, where the Web Parts control is to be added, and click the Add button to restore

these controls on the Web page.

Why the ImportCatalogPart control is used?

The ImportCatalogPart control is used to import the description file for a WebParts control {or other

ASP.NET server control that is used as a WehParts control). You can use this imported description file

to add the control to a Web page with pre-assigned settings to a specified zone.

What are three editor controls used with the EditorZone control? Give their brief description.

The three editor controls used along with the EditorZone control ate as follows:

O AppearanceEditorPart — Allows you to edit or change the characteristics of the WebParts controls
displayed on a Web page.

Q PropertyGridEditorPart — Allows the end-users to edit the custom properties of a WebParts control.

O BehaviorEditorPart—Enables end-users to modify the Behavior properties of the WebParts controls.

Why ProxyWebPartManager control is used?

The ProxyWebPartManager control is used to allow developers to specify static connections in a content

page when the WebPartManager control has been already placed in the master page.

List any six Web parts contrels used in ASP.NET 3.5?

The six Web Parts controls are as follows:

WebPartManager

ProxyWebPartManager

WebPartZone

LayoutEditorPart

AppearanceEditorPart

BehaviorEditorPart

[o Ry Wy O |

